Formula from Chapter 5: Enthalpy from heats of formation

\(ΔH_{\mathrm{reaction}} = \sum (n_{\mathrm{prod}} \cdot ΔH_{\mathrm{f,prod}}) - \sum (n_{\mathrm{react}} \cdot ΔH_{\mathrm{f,react}})\)     

\(\ce{3NO2(g)}\)\(\ce{ + }\)\(\ce{H2O(l)}\)\(\ce{->}\)\(\ce{2HNO3(aq)}\)\(\ce{ + }\)\(\ce{NO(g)}\)\(\ce{ }\)

\(\mathrm{ΔHf°}_{\mathrm{\ce{HNO3(aq)}}}\) \(= -207.4\ \frac{\mathrm{kJ}}{\mathrm{mol}}\)


\(\mathrm{ΔHf°}_{\mathrm{\ce{NO(g)}}}\) \(= 90.2\ \frac{\mathrm{kJ}}{\mathrm{mol}}\)


\(\mathrm{ΔHf°}_{\mathrm{\ce{NO2(g)}}}\) \(= 33.2\ \frac{\mathrm{kJ}}{\mathrm{mol}}\)


\(\mathrm{ΔHf°}_{\mathrm{\ce{H2O(l)}}}\) \(= -285.8\ \frac{\mathrm{kJ}}{\mathrm{mol}}\)


\(ν_{\mathrm{\ce{HNO3(aq)}}}\) \(= 2\)


\(ν_{\mathrm{\ce{NO(g)}}}\) \(= 1\)


\(ν_{\mathrm{\ce{NO2(g)}}}\) \(= 3\)


\(ν_{\mathrm{\ce{H2O(l)}}}\) \(= 1\)


\(ΔH°_{\mathrm{rxn}}\) \(= \sum (\mathrm{ΔHf°}_{\mathrm{\ce{HNO3(aq)}}} \cdot ν_{\mathrm{\ce{HNO3(aq)}}}, \mathrm{ΔHf°}_{\mathrm{\ce{NO(g)}}} \cdot ν_{\mathrm{\ce{NO(g)}}}) - \sum (ν_{\mathrm{\ce{NO2(g)}}} \cdot \mathrm{ΔHf°}_{\mathrm{\ce{NO2(g)}}}, ν_{\mathrm{\ce{H2O(l)}}} \cdot \mathrm{ΔHf°}_{\mathrm{\ce{H2O(l)}}})\)

\(\ \ \ =\sum (-207.4\ \frac{\mathrm{kJ}}{\mathrm{mol}} \cdot 2, 90.2\ \frac{\mathrm{kJ}}{\mathrm{mol}} \cdot 1) - \sum (3 \cdot 33.2\ \frac{\mathrm{kJ}}{\mathrm{mol}}, 1 \cdot (-285.8\ \frac{\mathrm{kJ}}{\mathrm{mol}}))\)

\(\ \ \ =\sum (-414.80\ \frac{\mathrm{kJ}}{\mathrm{mol}}, 90.20\ \frac{\mathrm{kJ}}{\mathrm{mol}}) - \sum (99.60\ \frac{\mathrm{kJ}}{\mathrm{mol}}, -285.80\ \frac{\mathrm{kJ}}{\mathrm{mol}})\)

\(\ \ \ =-324.60\ \frac{\mathrm{kJ}}{\mathrm{mol}} - (-186.20\ \frac{\mathrm{kJ}}{\mathrm{mol}})\)

\(\ \ \ =-138.4\ \frac{\mathrm{kJ}}{\mathrm{mol}}\)