Example 13.8: The Product \(K_{\mathrm{a}} \cdot K_{\mathrm{b}} = K_{\mathrm{w}}\)

Use the \(K_{\mathrm{b}}\) for the nitrite ion, \(\ce{NO2-}\), to calculate the \(K_{\mathrm{a}}\) for its conjugate acid.

Solution

\(K_{\mathrm{b}}\) for \(\ce{NO2-}\) is given in this section as \(2.17\times 10^{-11}\).
\(K_{\mathrm{b,\ce{NO2-}}}\) \(= 2.17\times 10^{-11}\)


The conjugate acid of \(\ce{NO2-}\) is \(\ce{HNO2:}\)
\(\ce{NO2-}\)\(\ce{ + }\)\(\ce{H+}\)\(\ce{<=>}\)\(\ce{HNO2}\)\(\ce{ }\)       \(K_{\mathrm{a}}\)

\(\ce{HNO2}\)\(\ce{ + }\)\(\ce{OH-}\)\(\ce{<=>}\)\(\ce{NO2-}\)\(\ce{ + }\)\(\ce{H2O}\)\(\ce{ }\)       \(K_{\mathrm{b}}\)

\(K_{\mathrm{a}}\) for \(\ce{HNO2}\) can be calculated using the relationship:

\(K_{\mathrm{a}} \cdot K_{\mathrm{b}} = K_{\mathrm{w}}\)     

\(K_{\mathrm{w}}\) \(= 1.0\times 10^{-14}\)


Solving for Ka, we get:

\(K_{\mathrm{a,\ce{NO2-}}}\) \(= \dfrac{K_{\mathrm{w}}}{K_{\mathrm{b,\ce{NO2-}}}}\)

\(\ \ \ =\dfrac{1.0\times 10^{-14}}{2.17\times 10^{-11}}\)

\(\ \ \ =4.6\times 10^{-4}\)


This answer can be verified by finding the \(K_{\mathrm{a}}\) for \(\ce{HNO2}\) in Appendix H.