Example 16.4: Will Ice Spontaneously Melt?

The entropy change for the process

\(\ce{H2O(s)}\)\(\ce{->}\)\(\ce{H2O(l)}\)\(\ce{ }\)

is 22.1 J/K and requires that the surroundings transfer 6.00 kJ of heat to the system. Is the process spontaneous at -10.00 °C? Is it spontaneous at +10.00 °C?

Solution

\(ΔS_{\mathrm{sys}}\) \(= 22.1\ \frac{\mathrm{J}}{\mathrm{K}}\)


\(q_{\mathrm{surr}}\) \(= -6.00\ \mathrm{kJ}\)


\(\mathrm{ΔSsurr} = \dfrac{q_{\mathrm{surr}}}{T}\)     

\(T_{\mathrm{1}}\) \(= -10.00\ \mathrm{°aC}\)


\(T_{\mathrm{2}}\) \(= 10.00\ \mathrm{°aC}\)


We can assess the spontaneity of the process by calculating the entropy change of the universe. If \(\mathrm{ΔSuniv}\) is positive, then the process is spontaneous. At both temperatures, \(\mathrm{ΔSsys}\) \( = 22.1\ \frac{\mathrm{J}}{\mathrm{K}}\) and qsurr \( = - 6.00\) kJ.
At -10.00 °C (263.15 K), the following is true:

\(ΔS_{\mathrm{surr\ 1}}\) \(= \dfrac{q_{\mathrm{surr}}}{T_{\mathrm{1}}}\)

\(\ \ \ =\dfrac{-6.00\ \mathrm{kJ}}{263.15\ \mathrm{K}}\)

\(\ \ \ =-0.02280\ \frac{\mathrm{kJ}}{\mathrm{K}}\)


\(ΔS_{\mathrm{univ}}\) \(= ΔS_{\mathrm{sys}} + ΔS_{\mathrm{surr\ 1}}\)

\(\ \ \ =22.1\ \frac{\mathrm{J}}{\mathrm{K}} + -0.02280\ \frac{\mathrm{kJ}}{\mathrm{K}}\)

\(\ \ \ =-0.7\ \frac{\mathrm{J}}{\mathrm{K}}\)


\(ΔS_{\mathrm{univ}}\) < 0, so melting is nonspontaneous (not spontaneous) at -10.0 °C.
At 10.00 °C (283.15 K), the following is true:

\(ΔS_{\mathrm{surr\ 2}}\) \(= \dfrac{q_{\mathrm{surr}}}{T_{\mathrm{2}}}\)

\(\ \ \ =\dfrac{-6.00\ \mathrm{kJ}}{283.15\ \mathrm{K}}\)

\(\ \ \ =-0.02119\ \frac{\mathrm{kJ}}{\mathrm{K}}\)


\(ΔS_{\mathrm{univ\ 2}}\) \(= ΔS_{\mathrm{sys}} + ΔS_{\mathrm{surr\ 2}}\)

\(\ \ \ =22.1\ \frac{\mathrm{J}}{\mathrm{K}} + -0.02119\ \frac{\mathrm{kJ}}{\mathrm{K}}\)

\(\ \ \ =0.9\ \frac{\mathrm{J}}{\mathrm{K}}\)


\(\mathrm{ΔSuniv}\) > 0, so melting is spontaneous at 10.00 °C.