Example 2.5: Calculation of Percent Abundance

Naturally occurring chlorine consists of \(\ce{^35Cl}\) (mass 34.96885 Da) and \(\ce{^37Cl}\) (mass 36.96590 Da), with an average mass of 35.453 Da. What is the percent composition of Cl in terms of these two isotopes?

Solution

\(m_{\mathrm{\ce{35}}}\) \(= 34.96885\ \mathrm{Da}\)


\(m_{\mathrm{\ce{37}}}\) \(= 36.96590\ \mathrm{Da}\)


\(m_{\mathrm{average}}\) \(= 35.453\ \mathrm{Da}\)


\(f_{\mathrm{\ce{37}}}\) = ?


\(f_{\mathrm{\ce{35}}}\) = ?


The average mass of chlorine is the fraction that is \(\ce{^35Cl}\) times the mass of \(\ce{^35Cl}\) plus the fraction that is \(\ce{^37Cl}\) times the mass of \(\ce{^37Cl}\).

\(m_{\mathrm{average}} = f_{\mathrm{\ce{35}}} \cdot m_{\mathrm{\ce{35}}} + f_{\mathrm{\ce{37}}} \cdot m_{\mathrm{\ce{37}}}\)      [Equation 1]

The fraction that is \(\ce{^35Cl}\) and the fraction that is \(\ce{^37Cl}\) must add up to 1, so the fraction of \(\ce{^37Cl}\) must equal 1 minus the fraction of \(\ce{^35Cl}\)
\(f_{\mathrm{\ce{37}}} = 1 - f_{\mathrm{\ce{35}}}\)      [Equation 2]

Substituting equation 2 into equation 1 gives

\(m_{\mathrm{average}} = f_{\mathrm{\ce{35}}} \cdot m_{\mathrm{\ce{35}}} + (1 - f_{\mathrm{\ce{35}}}) \cdot m_{\mathrm{\ce{37}}}\)     

Now we have an equation with a single unknown \(f_{\mathrm{\ce{35}}}\), we can solve for it and calculate it:

\(f_{\mathrm{\ce{35},m}} \cdot [\ce{37}] - f_{\mathrm{\ce{35}}} \cdot m_{\mathrm{\ce{35}}} = m_{\mathrm{\ce{37}}} - m_{\mathrm{average}}\)      ...terms with \(f_{\mathrm{\ce{35}}}\) on the left

\(f_{\mathrm{\ce{35}}} \cdot (m_{\mathrm{\ce{37}}} - m_{\mathrm{\ce{35}}}) = m_{\mathrm{\ce{37}}} - m_{\mathrm{average}}\)      ...isolated \(f_{\mathrm{\ce{35}}}\) on the left

\(f_{\mathrm{\ce{35}}} = \dfrac{m_{\mathrm{\ce{37}}} - m_{\mathrm{average}}}{m_{\mathrm{\ce{37}}} - m_{\mathrm{\ce{35}}}}\)      ...solved for \(f_{\mathrm{\ce{35}}}\)

\(f_{\mathrm{\ce{35}}}\) \(= \dfrac{m_{\mathrm{\ce{37}}} - m_{\mathrm{average}}}{m_{\mathrm{\ce{37}}} - m_{\mathrm{\ce{35}}}} \cdot 100\ \mathrm{%}\)

\(\ \ \ =\dfrac{36.96590\ \mathrm{Da} - 35.453\ \mathrm{Da}}{36.96590\ \mathrm{Da} - 34.96885\ \mathrm{Da}} \cdot 100\ \mathrm{%}\)

\(\ \ \ =\dfrac{1.5129\ \mathrm{Da}}{1.997050\ \mathrm{Da}} \cdot 100\ \mathrm{%}\)

\(\ \ \ =0.75757 \cdot 100\ \mathrm{%}\)

\(\ \ \ =75.76\ \mathrm{%}\)


To determine \(f_{\mathrm{\ce{37}}}\), we can use the fact that the relative ambundances add up to 1 (equation 2)

\(f_{\mathrm{\ce{37}}}\) \(= 1 - f_{\mathrm{\ce{35}}}\)

\(\ \ \ =1 - 75.76\ \mathrm{%}\)

\(\ \ \ =24.24\ \mathrm{%}\)


Therefore, chlorine consists of 75.76% \(\ce{^35Cl}\) and 24.24% \(\ce{^37Cl}\).