New from this chapter

\(P \cdot V_{\mathrm{gas}} = n \cdot R \cdot T\)      chemical amount of a pure gas (ideal gas law)

\(P_{\mathrm{component}} \cdot V_{\mathrm{gas}} = n_{\mathrm{component}} \cdot R \cdot T\)      chemical amount of a gas component

\(P_{\mathrm{total}} = \sum (P_{\mathrm{partial}})\)      Additivity of partial pressure

\(X_{\mathrm{A}} = \dfrac{n_{\mathrm{A}}}{n_{\mathrm{total}}}\)      definition of mole fraction

\(E_{\mathrm{kin\ avg}} = \dfrac{3}{2} \cdot R \cdot T\)      average molar kinetic energy of particle at given temperature

\(P_{\mathrm{A}} = X_{\mathrm{a}} \cdot P_{\mathrm{total}}\)      partial pressure from mole fraction

\(P = \dfrac{F}{A}\)      Definition of pressure

\(P_{\mathrm{hydrostatic}} = h \cdot ρ_{\mathrm{fluid}} \cdot g_{\mathrm{0}}\)      Hydrostatic pressure

\(\mathrm{rate}_{\mathrm{diffusion}} = \dfrac{n_{\mathrm{gas\ area}}}{Δt}\)      definition of rate of diffusion

\(\dfrac{\mathrm{rate}_{\mathrm{effusion\ A}}}{\mathrm{rate}_{\mathrm{effusion\ B}}} = \sqrt{\dfrac{m_{\mathrm{B}}}{m_{\mathrm{A}}}} = \sqrt{\dfrac{M_{\mathrm{B}}}{M_{\mathrm{A}}}}\)      molar mass dependence of rate of effusion

\(u_{\mathrm{rms}} = \sqrt{\dfrac{{u_{\mathrm{1}}}^{2} + {u_{\mathrm{2}}}^{2} + {u_{\mathrm{3}}}^{2} + {u_{\mathrm{4}}}^{2} \cdot \mathrm{...}}{n}}\)      definition of rms particle speed

\(u_{\mathrm{rms}} = \sqrt{\dfrac{2 \cdot E_{\mathrm{kin\ avg}} \cdot N_{\mathrm{A}}}{m_{\mathrm{particle}}}} = \sqrt{\dfrac{3 \cdot R \cdot T}{M_{\mathrm{particle}}}}\)      velocity of gas particle

\(Z = \dfrac{V_{\mathrm{molar\ measured}}}{V_{\mathrm{molar\ ideal}}} = \dfrac{P \cdot V_{\mathrm{molar\ measured}}}{R \cdot T}\)      non-ideality of gas

\((P + \dfrac{{n}^{2} \cdot a}{{V_{\mathrm{gas}}}^{2}}) \cdot (V_{\mathrm{gas}} - n \cdot b) = n \cdot R \cdot T\)      non-ideal gas law

From previous chapters

...important for many chemistry topics (you should know these by heart)

chemical amount from mass of a pure substance
chemical amount of a solute
chemical amounts in a chemical reaction (stoichiometry)
finding the limiting reactant

...might need one of those

\(ρ_{\mathrm{sample}} = \dfrac{m_{\mathrm{sample}}}{V_{\mathrm{sample}}}\)      Definition of density

\(N_{\mathrm{charge}} = N_{\mathrm{\ce{p+}}} - N_{\mathrm{\ce{e-}}}\)      protons and electrons have opposite charges

\(c_{\mathrm{1}} \cdot V_{\mathrm{1}} = c_{\mathrm{2}} \cdot V_{\mathrm{2}}\)      Dilution law

\(n_{\mathrm{1}} = ν \cdot n_{\mathrm{2}}\)      stoichiometric ratio (shortcut)

\(n_{\mathrm{1}} = ν_{\mathrm{1}} \cdot n_{\mathrm{\ce{->}}}\)      using chemical amount of reaction

\(\mathrm{Charge}_{\mathrm{species}} = \sum (N_{\mathrm{atom}} \cdot \mathrm{Ox}_{\mathrm{atom}})\)      Sum of oxidation number

\(n_{\mathrm{theoretical\ yield}} = n_{\mathrm{\ce{->}}} \cdot ν_{\mathrm{\ce{product}}}\)      calculating theoretical yield (based on chemical amount)

\(m_{\mathrm{theoretical\ yield}} = n_{\mathrm{\ce{->}}} \cdot ν_{\mathrm{\ce{product}}} \cdot M_{\mathrm{\ce{product}}}\)      calculating theoretical yield (by mass)

\(\mathrm{yield}_{\mathrm{rel}} = \dfrac{n_{\mathrm{actual}}}{n_{\mathrm{theoretical}}} \cdot 100\ \mathrm{%}\)      Calculating percent yield from amounts

\(\mathrm{yield}_{\mathrm{rel}} = \dfrac{m_{\mathrm{actual}}}{m_{\mathrm{theoretical}}} \cdot 100\ \mathrm{%}\)      Calculating percent yield from masses

...less likely

\(N_{\mathrm{A}} = \dfrac{N_{\mathrm{particle}}}{n_{\mathrm{particle}}}\)      definition Avogadro's constant

\(\mathrm{fraction}_{\mathrm{bymass}} = \dfrac{m_{\mathrm{solute}}}{m_{\mathrm{solution}}} \cdot 100\ \mathrm{%}\)      definition concentration as mass fraction in percent

\(\mathrm{fraction}_{\mathrm{byvolume}} = \dfrac{V_{\mathrm{solute}}}{V_{\mathrm{solution}}}\)      definition concentration as volume fraction in percent

\(\mathrm{ppm} = \dfrac{1}{1000000}\)      definition ppm

\(\mathrm{ppb} = 1\times 10^{-9}\)      definition ppb

\(N_{\mathrm{atoms}} = \mathrm{coeff} \cdot \mathrm{subscript}\)      Counting atoms in formula or chemical equation

\(ΔU = q + w\)      First law of thermodynamics

\(ΔH_{\mathrm{reaction}} = \sum (n_{\mathrm{prod}} \cdot ΔH_{\mathrm{f,prod}}) - \sum (n_{\mathrm{react}} \cdot ΔH_{\mathrm{f,react}})\)      Enthalpy from heats of formation

\(E_{\mathrm{photon}} = h_{\mathrm{Planck}} \cdot ν\)      Photon: Energy vs frequency

\(\mathrm{charge}_{\mathrm{formal}} = \mathrm{⋕e}_{\mathrm{outer\ freeatom}} - \mathrm{⋕e}_{\mathrm{lonepairs}} - \dfrac{1}{2} \cdot \mathrm{⋕e}_{\mathrm{bonding}}\)      Definition of formal charge

\(D_{\mathrm{\ce{X-Y}}} = ΔH_{\mathrm{bonddissociation}}\)      Definition of bond energy

\(\mathrm{order}_{\mathrm{bond}} = \dfrac{\mathrm{⋕e}_{\mathrm{bonding}} - \mathrm{⋕e}_{\mathrm{antibonding}}}{2}\)      definition bond order